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T
he Wright brothers invented the first practical airplane in the first decade

of the twentieth century. Along with this came the rise of aeronautical

engineering as an exciting, new, distinct discipline. College courses in

aeronautical engineering were offered as early as 1914 at the University of

Michigan and at MIT. Michigan was the first university to establish an aeronau-

tics department with a four-year degree-granting program in 1916; by 1926 it

had graduated over one hundred students. The need for substantive textbooks in

various areas of aeronautical engineering became critical. Rising to this demand,

McGraw Hill became one of the first publishers of aeronautical engineering text-

books, starting with Airplane Design and Construction by Ottorino Pomilio in

1919, and the classic and definitive text Airplane Design: Aerodynamics by the

iconic Edward P. Warner in 1927. Warner’s book was a watershed in aeronautical

engineering textbooks.

Since then, McGraw Hill has become the time-honored publisher of books in

aeronautical engineering. With the advent of high-speed flight after World War II

and the space program in 1957, aeronautical and aerospace engineering grew

to new heights. There was, however, a hiatus that occurred in the 1970s when

aerospace engineering went through a transition, and virtually no new books in

the field were published for almost a decade by anybody. McGraw Hill broke

this hiatus with the foresight of its Chief Engineering Editor, B.J. Clark, who

was instrumental in the publication of Introduction to Flight by John Anderson.

First published in 1978, Introduction to Flight is now in its 8th edition. Clark’s

bold decision was followed by McGraw Hill riding the crest of a new wave of

students and activity in aerospace engineering, and it opened the flood-gates for

new textbooks in the field.

In 1988, McGraw Hill initiated its formal series in Aeronautical and

Aerospace Engineering, gathering together under one roof all its existing texts

in the field, and soliciting new manuscripts. This author is proud to have been

made the consulting editor for this series, and to have contributed some of the

titles. Starting with eight books in 1988, the series now embraces 24 books cov-

ering a broad range of discipline in the field. With this, McGraw Hill continues

its tradition, started in 1919, as the premier publisher of important textbooks in

aeronautical and aerospace engineering.

John D. Anderson, Jr.
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PREFACE TO THE SEVENTH EDITION

FUNDAMENTALS OF AERODYNAMICS

T
his book follows in the same tradition as the previous editions: it is for

students—to be read, understood, and enjoyed. It is consciously written

in a clear, informal, and direct style to talk to the reader and gain their

immediate interest in the challenging and yet beautiful discipline of aerodynamics.

The explanation of each topic is carefully constructed to make sense to the reader.

Moreover, the structure of each chapter is highly organized to keep the reader

aware of where we are, where we were, and where we are going with the flow of

new and important ideas and concepts.

This edition continues with the same instructional and learning features in-

troduced in the previous editions, such as preview boxes at the beginning of each

chapter, road maps to keep the reader focused on the flow of new ideas and con-

cepts, and end-of-chapter integrated work challenges that help to consolidate the

important concepts in the minds of the readers. It also continues with such fea-

tures as an introduction to computational fluid dynamics as an integral part of the

modern study of aerodynamics, a chapter devoted entirely to hypersonic aerody-

namics which has applications to new vehicle designs, and historical notes placed

at the end of many of the chapters (a unique tradition that started with the first

edition of this book, and that has carried on through all of the subsequent edi-

tions). Due to the extremely favorable comments from readers and users of the

first six editions, virtually all the content of the earlier editions has been carried

over intact to the present edition.

The major new feature of this edition is the addition of a valuable co-author,

Dr. Christopher Cadou, Keystone Professor of Engineering at the University of

Maryland. Dr. Cadou has contributed new worked examples and many new end-

of-chapter homework problems which constitute most of the new content to this

Seventh Edition, and which in fact greatly enhances the learning power of the

new edition.

This book is organized along classical lines. It deals first with inviscid incom-

pressible flow, then progresses to inviscid compressible flow, and then viscous

flow in sequence. The material nicely divides into a two semester course, with

Parts 1 and 2 in the first semester and Parts 3 and 4 in the second semester. The

entire book has been used in a fast-paced first semester graduate course intended

to introduce the fundamentals of aerodynamics to new graduate students who

have not had this material as part of their undergraduate education. The book

works well in such a mode.

Thanks go to the McGraw Hill editorial and production staff for their excel-

lent help in producing this book, and to the legions of students over the years for
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many stimulating discussions that have influenced the development of this book.

Special thanks go to both families of the two authors; families who have been

patient and understanding about the time devoted to the preparation of the book.

As a final comment, aerodynamics is a subject of intellectual beauty, com-

posed and drawn by many great minds over the centuries. Fundamentals of Aero-

dynamics is intended to portray and convey this beauty. Do you feel challenged

and interested by these thoughts? If so, then read on, and enjoy.

John D. Anderson, Jr.

Christopher P. Cadou
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entire semester of class recordings. Help turn your students’ study time into learn-

ing moments immediately supported by your lecture. With Tegrity, you also in-

crease intent listening and class participation by easing students’ concerns about

note-taking. Using Tegrity in Connect will make it more likely you will see stu-

dents’ faces, not the tops of their heads.

Writing Assignment

Available within Connect and Connect Master, the Writing Assignment tool

delivers a learning experience to help students improve their written communication

skills and conceptual understanding. As an instructor, you can assign, monitor,

grade, and provide feedback on writing more efficiently and effectively.

Create
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it with your own content quickly and easily, and tap into other rights-secured,

third-party content such as readings, cases, and articles. Content can be arranged
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free digital copy to review in just minutes! Visit McGraw Hill Create R©—www.

mcgrawhillcreate.com—today and begin building!
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McGraw Hill believes in unlocking the potential of every learner at every stage
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and are accessible to, all the diverse, global customers we serve. Within McGraw

Hill, we foster a culture of belonging, and we work with partners who share our
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P A R T 1
Fundamental Principles

I n Part 1, we cover some of the basic principles that apply to aerodynamics in

general. These are the pillars on which all of aerodynamics is based.

1





C H A P T E R 1

Aerodynamics: Some
Introductory Thoughts

The term “aerodynamics” is generally used for problems arising from flight and

other topics involving the flow of air.

Ludwig Prandtl, 1949

Aerodynamics: The dynamics of gases, especially atmospheric interactions with

moving objects.

The American Heritage

Dictionary of the English

Language, 1969

PREVIEW BOX

Why learn about aerodynamics? For an answer, just

take a look at the following five photographs showing

a progression of airplanes over the past 70 years. The

Douglas DC-3 (Figure 1.1), one of the most famous

aircraft of all time, is a low-speed subsonic trans-

port designed during the 1930s. Without a knowledge

of low-speed aerodynamics, this aircraft would have

never existed. The Boeing 707 (Figure 1.2) opened

high-speed subsonic flight to millions of passengers

beginning in the late 1950s. Without a knowledge

of high-speed subsonic aerodynamics, most of us

would still be relegated to ground transportation. Figure 1.1 Douglas DC-3 (NASA).

3
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Figure 1.2 Boeing 707 (CSU Archives/Everett

Collection/Alamy Stock Photo).

Figure 1.3 Bell X-1 (Library of Congress, Prints &

Photographs Division [LC-USZ6-1658]).

Figure 1.4 Lockheed F-104 (Library of Congress,

Prints & Photographs Division [LC-USZ62-94416]).

The Bell X-1 (Figure 1.3) became the first piloted

airplane to fly faster than sound, a feat accom-

plished with Captain Chuck Yeager at the controls on

October 14, 1947. Without a knowledge of transonic

aerodynamics (near, at, and just above the speed of

sound), neither the X-1, nor any other airplane, would

have ever broken the sound barrier. The Lockheed

F-104 (Figure 1.4) was the first supersonic airplane

Figure 1.5 Lockheed-Martin F-22 (U.S. Air Force

Photo/Staff Sgt. Vernon Young Jr.).

Figure 1.6 Blended wing body (NASA).

point-designed to fly at twice the speed of sound,

accomplished in the 1950s. The Lockheed-Martin

F-22 (Figure 1.5) is a modern fighter aircraft designed

for sustained supersonic flight. Without a knowl-

edge of supersonic aerodynamics, these supersonic

airplanes would not exist. Finally, an example of

an innovative new vehicle concept for high-speed

subsonic flight is the blended wing body shown in

Figure 1.6. At the time of writing, the blended-wing-

body promises to carry from 400 to 800 passengers

over long distances with almost 30 percent less fuel

per seat-mile than a conventional jet transport. This

would be a “renaissance” in long-haul transport. The

salient design aspects of this exciting new concept are

discussed in Section 11.10. The airplanes in Figures 1.1–

1.6 are six good reasons to learn about aerody-

namics. The major purpose of this book is to help

you do this. As you continue to read this and

subsequent chapters, you will progressively learn

about low-speed aerodynamics, high-speed subsonic

aerodynamics, transonic aerodynamics, supersonic

aerodynamics, and more.
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Airplanes are by no means the only application

of aerodynamics. The air flow over an automobile,

the gas flow through the internal combustion engine

powering an automobile, weather and storm predic-

tion, the flow through a windmill, the production of

thrust by gas turbine jet engines and rocket engines,

and the movement of air through building heater and

air-conditioning systems are just a few other exam-

ples of the application of aerodynamics. The material

in this book is powerful stuff—important stuff. Have

fun reading and learning about aerodynamics.

To learn a new subject, you simply have to start

at the beginning. This chapter is the beginning of our

study of aerodynamics; it weaves together a series of

introductory thoughts, definitions, and concepts es-

sential to our discussions in subsequent chapters. For

example, how does nature reach out and grab hold of

an airplane in flight—or any other object immersed

in a flowing fluid—and exert an aerodynamic force on

the object? We will find out here. The resultant aero-

dynamic force is frequently resolved into two compo-

nents defined as lift and drag; but rather than dealing

with the lift and drag forces themselves, aerodynami-

cists deal instead with lift and drag coefficients. What

is so magic about lift and drag coefficients? We will

see. What is a Reynolds number? Mach number? In-

viscid flow? Viscous flow? These rather mysterious

sounding terms will be demystified in the present

chapter. They and others constitute the language of

aerodynamics, and as we all know, to do anything

useful you have to know the language. Visualize this

chapter as a beginning language lesson, necessary to

go on to the exciting aerodynamic applications in later

chapters. There is a certain enjoyment and satisfaction

in learning a new language. Take this chapter in that

spirit, and move on.

1.1 IMPORTANCE OF AERODYNAMICS:
HISTORICAL EXAMPLES

On August 8, 1588, the waters of the English Channel churned with the gyra-

tions of hundreds of warships. The Spanish Armada had arrived to carry out an

invasion of Elizabethan England and was met head-on by the English fleet under

the command of Sir Francis Drake. The Spanish ships were large and heavy; they

were packed with soldiers and carried formidable cannons that fired 50 lb round

shot that could devastate any ship of that era. In contrast, the English ships were

smaller and lighter; they carried no soldiers and were armed with lighter, shorter-

range cannons. The balance of power in Europe hinged on the outcome of this

naval encounter. King Philip II of Catholic Spain was attempting to squash Protes-

tant England’s rising influence in the political and religious affairs of Europe; in

turn, Queen Elizabeth I was attempting to defend the very existence of England

as a sovereign state. In fact, on that crucial day in 1588, when the English floated

six fire ships into the Spanish formation and then drove headlong into the ensuing

confusion, the future history of Europe was in the balance. In the final outcome,

the heavier, sluggish, Spanish ships were no match for the faster, more maneuver-

able, English craft, and by that evening the Spanish Armada lay in disarray, no

longer a threat to England. This naval battle is of particular importance because it

was the first in history to be fought by ships on both sides powered completely by

sail (in contrast to earlier combinations of oars and sail), and it taught the world

that political power was going to be synonymous with naval power. In turn, naval
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𝜃

Rectilinear stream of
discrete particles

Upon impacting the
body, the particles
give up their
momentum normal
to the surface, and
travel downstream
along the surface.

Figure 1.7 Isaac Newton’s model of fluid flow in the year 1687. This

model was widely adopted in the seventeenth and eighteenth centuries

but was later found to be conceptually inaccurate for most fluid flows.

power was going to depend greatly on the speed and maneuverability of ships. To

increase the speed of a ship, it is important to reduce the resistance created by the water

flow around the ship’s hull. Suddenly, the drag on ship hulls became an engineering

problem of great interest, thus giving impetus to the study of fluid mechanics.

This impetus hit its stride almost a century later, when, in 1687, Isaac Newton

(1642–1727) published his famous Principia, in which the entire second book

was devoted to fluid mechanics. Newton encountered the same difficulty as others

before him, namely, that the analysis of fluid flow is conceptually more difficult

than the dynamics of solid bodies. A solid body is usually geometrically well de-

fined, and its motion is therefore relatively easy to describe. On the other hand, a

fluid is a “squishy” substance, and in Newton’s time it was difficult to decide even

how to qualitatively model its motion, let alone obtain quantitative relationships.

Newton considered a fluid flow as a uniform, rectilinear stream of particles, much

like a cloud of pellets from a shotgun blast. As sketched in Figure 1.7, Newton

assumed that upon striking a surface inclined at an angle 𝜃 to the stream, the

particles would transfer their normal momentum to the surface but their tangen-

tial momentum would be preserved. Hence, after collision with the surface, the

particles would then move along the surface. This led to an expression for the

hydrodynamic force on the surface which varies as sin2 𝜃. This is Newton’s fa-

mous sine-squared law (described in detail in Chapter 14). Although its accuracy

left much to be desired, its simplicity led to wide application in naval architec-

ture. Later, in 1777, a series of experiments was carried out by Jean LeRond

d’Alembert (1717–1783), under the support of the French government, in order

to measure the resistance of ships in canals. The results showed that “the rule that

for oblique planes resistance varies with the sine square of the angle of incidence

holds good only for angles between 50 and 90◦ and must be abandoned for lesser

angles.” Also, in 1781, Leonhard Euler (1707–1783) pointed out the physical in-

consistency of Newton’s model (Figure 1.7) consisting of a rectilinear stream of

particles impacting without warning on a surface. In contrast to this model, Euler
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noted that the fluid moving toward a body “before reaching the latter, bends its

direction and its velocity so that when it reaches the body it flows past it along

the surface, and exercises no other force on the body except the pressure corre-

sponding to the single points of contact.” Euler went on to present a formula for

resistance that attempted to take into account the shear stress distribution along

the surface, as well as the pressure distribution. This expression became propor-

tional to sin2 𝜃 for large incidence angles, whereas it was proportional to sin 𝜃
at small incidence angles. Euler noted that such a variation was in reasonable

agreement with the ship-hull experiments carried out by d’Alembert.

This early work in fluid dynamics has now been superseded by modern con-

cepts and techniques. (However, amazingly enough, Newton’s sine-squared law

has found new application in very high-speed aerodynamics, to be discussed in

Chapter 14.) The major point here is that the rapid rise in the importance of naval

architecture after the sixteenth century made fluid dynamics an important science,

occupying the minds of Newton, d’Alembert, and Euler, among many others. To-

day, the modern ideas of fluid dynamics, presented in this book, are still driven

in part by the importance of reducing hull drag on ships.

Consider a second historical example. The scene shifts to Kill Devil Hills,

4 mi south of Kitty Hawk, North Carolina. It is summer of 1901, and Wilbur

and Orville Wright are struggling with their second major glider design, the first

being a stunning failure the previous year. The airfoil shape and wing design of

their glider are based on aerodynamic data published in the 1890s by the great

German aviation pioneer Otto Lilienthal (1848–1896) and by Samuel Pierpont

Langley (1834–1906), secretary of the Smithsonian Institution—the most pres-

tigious scientific position in the United States at that time. Because their first

glider in 1900 produced no meaningful lift, the Wright brothers have increased

the wing area from 165 to 290 ft2 and have increased the wing camber (a mea-

sure of the airfoil curvature—the larger the camber, the more “arched” is the thin

airfoil shape) by almost a factor of 2. But something is still wrong. In Wilbur’s

words, the glider’s “lifting capacity seemed scarcely one-third of the calculated

amount.” Frustration sets in. The glider is not performing even close to their ex-

pectations, although it is designed on the basis of the best available aerodynamic

data. On August 20, the Wright brothers despairingly pack themselves aboard a

train going back to Dayton, Ohio. On the ride back, Wilbur mutters that “nobody

will fly for a thousand years.” However, one of the hallmarks of the Wrights is

perseverance, and within weeks of returning to Dayton, they decide on a com-

plete departure from their previous approach. Wilbur later wrote that “having set

out with absolute faith in the existing scientific data, we were driven to doubt one

thing after another, until finally after two years of experiment, we cast it all aside,

and decided to rely entirely upon our own investigations.” Since their 1901 glider

was of poor aerodynamic design, the Wrights set about determining what consti-

tutes good aerodynamic design. In the fall of 1901, they design and build a 6 ft

long, 16 in square wind tunnel powered by a two-bladed fan connected to a gaso-

line engine. A replica of the Wrights’ tunnel is shown in Figure 1.8a. In their wind

tunnel they test over 200 different wing and airfoil shapes, including flat plates,
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(a)

(b)

Figure 1.8 (a) Replica of the wind tunnel designed, built,

and used by the Wright brothers in Dayton, Ohio, during

1901–1902. (b) Wing models tested by the Wright brothers

in their wind tunnel during 1901–1902. [(a) NASA;

(b) Courtesy of John Anderson.]

curved plates, rounded leading edges, rectangular and curved planforms, and var-

ious monoplane and multiplane configurations. A sample of their test models is

shown in Figure 1.8b. The aerodynamic data are taken logically and carefully.

Armed with their new aerodynamic information, the Wrights design a new glider

in the spring of 1902. The airfoil is much more efficient; the camber is reduced

considerably, and the location of the maximum rise of the airfoil is moved closer

to the front of the wing. The most obvious change, however, is that the ratio of

the length of the wing (wingspan) to the distance from the front to the rear of the

airfoil (chord length) is increased from 3 to 6. The success of this glider during
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the summer and fall of 1902 is astounding; Orville and Wilbur accumulate over a

thousand flights during this period. In contrast to the previous year, the Wrights

return to Dayton flushed with success and devote all their subsequent efforts to

powered flight. The rest is history.

The major point here is that good aerodynamics was vital to the ultimate suc-

cess of the Wright brothers and, of course, to all subsequent successful airplane

designs up to the present day. The importance of aerodynamics to successful

manned flight goes without saying, and a major thrust of this book is to present

the aerodynamic fundamentals that govern such flight.

Consider a third historical example of the importance of aerodynamics, this

time as it relates to rockets and space flight. High-speed, supersonic flight had

become a dominant feature of aerodynamics by the end of World War II. By this

time, aerodynamicists appreciated the advantages of using slender, pointed body

shapes to reduce the drag of supersonic vehicles. The more pointed and slender

the body, the weaker the shock wave attached to the nose, and hence the smaller

the wave drag. Consequently, the German V-2 rocket used during the last stages

of World War II had a pointed nose, and all short-range rocket vehicles flown

during the next decade followed suit. Then, in 1953, the first hydrogen bomb was

exploded by the United States. This immediately spurred the development of long-

range intercontinental ballistic missiles (ICBMs) to deliver such bombs. These

vehicles were designed to fly outside the region of the earth’s atmosphere for

distances of 5000 mi or more and to reenter the atmosphere at suborbital speeds

of from 20,000 to 22,000 ft/s. At such high velocities, the aerodynamic heating

of the reentry vehicle becomes severe, and this heating problem dominated the

minds of high-speed aerodynamicists. Their first thinking was conventional—a

sharp-pointed, slender reentry body. Efforts to minimize aerodynamic heating

centered on the maintenance of laminar boundary layer flow on the vehicle’s sur-

face; such laminar flow produces far less heating than turbulent flow (discussed

in Chapters 15 and 19). However, nature much prefers turbulent flow, and reentry

vehicles are no exception. Therefore, the pointed-nose reentry body was doomed

to failure because it would burn up in the atmosphere before reaching the earth’s

surface.

However, in 1951, one of those major breakthroughs that come very infre-

quently in engineering was created by H. Julian Allen at the NACA (National

Advisory Committee for Aeronautics) Ames Aeronautical Laboratory—he in-

troduced the concept of the blunt reentry body. His thinking was paced by the

following concepts. At the beginning of reentry, near the outer edge of the atmo-

sphere, the vehicle has a large amount of kinetic energy due to its high velocity

and a large amount of potential energy due to its high altitude. However, by the

time the vehicle reaches the surface of the earth, its velocity is relatively small and

its altitude is zero; hence, it has virtually no kinetic or potential energy. Where

has all the energy gone? The answer is that it has gone into (1) heating the body

and (2) heating the airflow around the body. This is illustrated in Figure 1.9. Here,

the shock wave from the nose of the vehicle heats the airflow around the vehicle;

at the same time, the vehicle is heated by the intense frictional dissipation within

the boundary layer on the surface. Allen reasoned that if more of the total reentry


